metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dan Li,^a* Ya-Fang Luo,^a Tao Wu^a and Seik Weng Ng^b

^aDepartment of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dli@stu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.007 Å R factor = 0.052 wR factor = 0.124 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Iodo(1-methyl-2-mercaptoimidazole-κ**S**)**bis(triphenylphosphine-**κ**P**)**copper(I)**

The heterocyclic ligand in the title copper(I) iodide adduct, $[CuI(C_4H_6N_2S)(C_{18}H_{15}P)_2]$, coordinates to the metal atom through the S atom; the Cu atom is in a tetrahedral environment.

Received 6 April 2004 Accepted 27 April 2004 Online 8 May 2004

Comment

Our interest in mixed-ligand copper(I) complexes with heterocyclic mercaptans and triarylphosphines stems from our studies on the coordination compounds of the coinage metals; such complexes are photoluminescent materials (Li *et al.*, 2003). The property is also exhibited by the copper(I) iodide complex with the 2-mercapto-1-methylimidazole/triphenyl-phosphine pair of ligands, (I).

The Cu atom in (I) is in a tetrahedral environment (Fig. 1). A distorted tetrahedral geometry is also found in the phosphine adducts of copper(I) halides (Aslanidis *et al.*, 1993, 1998; Aslanidis, Cox, Divanidis & Tsipis, 2002; Aslanidis, Cox, Karagiannidis *et al.*, 2002; Cox *et al.*, 2000; Karagiannidis *et al.*, 1990; Lecomte *et al.*, 1989; Skoulika *et al.*, 1991). The Cu–I and Cu–S distances in (I) are similar to those observed in bis(triphenylphosphine)(pyrimidine-2-thione)copper(I) iodide (Aslanidis *et al.*, 1993), and bis(triphenylphosphine)(benzothiazole-2-thione)copper(I) iodide and bis(triphenylphosphine)(benzothiazole-2-thione)copper(I) iodide (Aslanidis, Cox, Karagiannidis *et al.*, 2002).

Experimental

Triphenylphosphine (0.11 g, 0.4 mmol) was added to a dichloromethane suspension of cuprous iodide (0.038 g, 0.2 mmol). After stirring for 0.5 h, 1-methylimidazole-2-mercaptan (0.023 g, 0.2 mmol) was added. The mixture was stirred for another hour to afford a colorless solution. The adduct was precipitated from solution by diethyl ether. Slow diffusion of diethyl ether into a dichloromethane solution of the powder led to well formed crystals.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $\begin{bmatrix} \text{CuI}(\text{C}_4\text{H}_6\text{N}_2\text{S})(\text{C}_{18}\text{H}_{15}\text{P})_2 \end{bmatrix} \\ M_r = 829.15 \\ \text{Orthorhombic, } Pccn \\ a = 22.203 (1) \text{ Å} \\ b = 17.877 (1) \text{ Å} \\ c = 18.487 (1) \text{ Å} \\ V = 7337.6 (7) \text{ Å}^3 \\ Z = 8 \\ D_x = 1.501 \text{ Mg m}^{-3} \\ \end{bmatrix}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.660, T_{max} = 0.785$ 43 051 measured reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.052$	independent and constrained
$wR(F^2) = 0.124$	refinement
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0571P)^2]$
8738 reflections	where $P = (F_o^2 + 2F_c^2)/3$
428 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.2 - 20.8^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int}=0.066$

 $\theta_{\rm max} = 28.1^\circ$

 $h = -17 \rightarrow 29$

 $k = -22 \rightarrow 23$

 $l = -24 \rightarrow 23$

Block, colorless $0.28 \times 0.22 \times 0.15$ mm

Cell parameters from 4458

8738 independent reflections

6085 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

I1-Cu1	2.6811 (5)	Cu1-P2	2.288 (1)
Cu1-P1	2.284 (1)	Cu1-S1	2.369 (1)
P1-Cu1-P2	125.72 (4)	P2-Cu1-S1	106.75 (4)
P1-Cu1-S1	102.99 (4)	P2-Cu1-I1	103.41 (3)
P1-Cu1-I1	104.63 (3)	S1-Cu1-I1	113.70 (3)

The aromatic H atoms were placed in calculated positions $[C-H = 0.93 \text{ Å} \text{ and } U_{iso} = 1.2U_{eq}(C)]$ in the riding-model approximation. The torsion angle of the methyl group was refined $[C-H = 0.96 \text{ Å} \text{ and } U_{iso} = 1.5U_{eq}(C)]$. The nitrogen-bound H atom was located and refined with a distance restraint of N-H = 0.85 (1) Å. This atom is not involved in any hydrogen-bonding interaction.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Natural Science Foundation of China (Nos. 20271031 and 29901004), the Natural Science

Figure 1

ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Foundation of Guangdong Province (No. 021240) and the University of Malaya for supporting this study.

References

- Aslanidis, P., Cox, P. J., Divanidis, S. & Tsipis, A. C. (2002). Inorg. Chem. 41, 6875–6886.
- Aslanidis, P., Cox, P. J., Karagiannidis, P., Hadjikakou, S. K. & Antoniadis, C. D. (2002). Eur. J. Inorg. Chem. pp. 2216–2222.
- Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P. & Cox, P. J. (1998). Inorg. Chim. Acta, 271, 243–247.
- Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P., Gdaniec, M. & Kosturkiewicz, Z. (1993). Polyhedron, 12, 2221–2226.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). *Polyhedron*, **19**, 1615–1620. Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA. Karagiannidis, P., Aslanidis, P., Papastefanou, S., Mentzafos, D., Hountas, A. &

Terzis, A. (1990). Polyhedron, 9, 981–986.

Lecomte, C., Skoulika, S., Aslanidis, P., Karagiannidis, P. & Papastefanou, S. (1989). *Polyhedron*, **8**, 1103–1109.

Li, R.-Z., Li, D., Huang, X.-C., Qi, Z.-Y. & Chen, X.-M. (2003). Inorg. Chem. Commun. 6, 1017–1019.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Skoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207–211.